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1. (Exercise 15 of Chapter 8 of [SS03]) Here are two properties enjoyed by automor-
phisms of the upper half-plane.

(a)
(b)

Suppose ® is an automorphism of H that fixes three distinct points on the real
axis. Then @ is the identity.

Suppose (21, T2, r3) and (y1, Y2, y3) are two pairs of three distinct points on the
real axis with
T < Ty < w3z and Yy < ys < Y3.

Prove that there exists (a unique) automorphism ® of H so that ®(z;) = yj,
7 =1,2,3. The same conclusion holds if y3 < y1 < y2 or Yo < y3 < y1.

Solution. (a) By Theorem 2.4 of Chapter 8 of [SS03|, ® is of the form

b
B(z) = Zid, a.be.deR and ad—be = 1.

Let x1,z9, x5 € R be the distinct fixed points of ®, then
O(z))=a; = cxi+(d—a)r; —b=0, fori=1,2,3.

However, by the fundamental theorem of algebra, the equation above has at
most two solutions. Hence, the equation above can only be the trivial equation
(0 = 0) which implies ¢ = d — a = —b = 0. In particular, since ad = 1, this
forces a = d = £1. Plugging these values for a, b, ¢, d back into the form of ®
above, we find that

+z

S

®(2)
the identity.

We can define ® implicitly by the equation of cross ratios

(z —x)(x2 —25) _ (P(2) = 41)(y2 — y3)

(z—x3)(za —21)  (P(2) —y3) (2 — 1)

which by construction makes ® map x; to y; for ¢« = 1,2, 3 respectively. The
way to see this is that the equation above becomes

(P(2) —y3) (Y2 — y1) (2 — 1) (w2 — 23) = (P(2) — Y1) (Y2 — ¥3)(z — @3) (72 — 11).

In the equation above, if ®(z) = y;, then the right-hand side is 0 forcing z =
on the left-hand side. Similarly, if ®(z) = y3, then the left-hand side is 0 which
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forces z = x3 on the right-hand side. Finally, if ®(2) = g, then the equation
above reduces to

(z —x) (22 — x3) = (2 — x3) (12 — 1) = 2(21 — x3) = T2(x1 — T3) = 2 = Xa.

We now solve for ®(z) explicitly. Let o« = (y2 — y1)(x2 — z3) and 8 = (y2 —
y3)(zo — x1). Then re-arranging the equation above, we obtain

(z — x1)ysa — (2 — x3)y1 B
(z—x)a—(z—x3)8
(ysae — y18)2 + (Y1238 — ysm10)
(v — B)z + (3 — x100)

P(z) =

which has determinant

(yza — 1 B) (w38 — v100) — (1238 — ysr10) (o — )

= af(z3ys + T1y1 — T3yr — T1Y3)

= af(zs — x1)(ys — y1)

= (Y2 — y1)(z2 — 23) (Y2 — y3) (72 — 1) (3 — 1) (y3 — V1)
which is positive by the assumptions 21 < z3 < x3,31 < y2 < y3. Hence, we see
that ® is an automorphism of H. It remains to show uniqueness. Suppose ¢
is another automorphism of H which maps z; to y; for ¢ = 1,2, 3 respectively.
Then we see that @' o ® and ®~! o ® both have three distinct fixed points

which by part (a) above implies they are both the identity. From here it is
easy to deduce that & = ®.

<

2. (Exercise 21 of Chapter 8 of [SS03]) We consider conformal mappings to triangles.
(a) Show that
| era-o
0

with 0 < 87 < 1,0 < o < 1, and 1 < (1 + B2 < 2, maps H to a triangle
whose vertices are the images of 0,1, and oo, and with angles a7, asm, and
Q3T Where Oéj—i—ﬁj =1 and ﬁl—i—ﬂz—l—ﬁg = 2.

(b) What happens when ) + 5y = 17
(¢c) What happens when 0 < 8; + 5y < 17
(d) In (a), the length of the side of the triangle opposite angle o, is

MF(M)F(O@)F(%)'

™

Solution. (a) Note the typo the integral above (with corrections in red) in the
textbook. Letting S(z) be the integral above, we see that

S = [ =gy g = e [ ec =1y
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(b)

()
(d)

which by Proposition 4.1 of Chapter 8 of [SS03], maps RU{oo} to the triangle
with vertices at the images of 0, 1, oo with the desired conclusions on the angles.
To see that S'is a conformal mapping of H to the triangular region with vertices
as above, we use the uniqueness of Theorem 4.7 of Chapter 8 of [SS03|. Let F
be the conformal mapping of H to the triangle with the desired vertices, that
is, F'(0) = S(0), F(1) = S(1), F(co) = S(00) and the same interior angles as
above. Then by Theorem 4.7, F' takes the form

F(z)=Cy / CPC —1)7P2dC + Cy.
0

It remains to determine the values of the constants C4,Cy. Since S(0) = 0,
F(0) = 0 as well and hence Cy = 0. Then the equation F(1) = S(1) implies
Oy = €7 as well.

By Proposition 4.1, when 31+ 32 = 1, the interior angle at the image of infinity
is m and therefore the image of S is the unbounded region with a line segment
and two parallel lines as the boundary.

Similarly, when 3; + 5 < 1, the image of S is the unbounded region with line
segment and two non-parallel lines as the boundary.

The sides are the images of (—o0,0), (0, 1), (1, 00) respectively. Recall the for-
mula for the Beta function shown in Homework 3

Then we first compute

/1(_t>—ﬂzt—ﬁldt _ T -5)PA-4)

@6 B
_ Dlag)l(en)
F(l — 063)
= 29 ()1 (g) (e

where we also used the symmetry of the I' function around the line Re(s) = %
(Theorem 1.4 of Chapter 6 of [SS03]).

For | 100(1 —t)~P2¢t=A1dt one obtains the corresponding formula using the change
of variables t = s~ and for f_ooo(l —t)7P2¢=P1dt one obtains the corresponding
formula using the change of variables t = 1 — s~ 1.

<

3. (Exercise 22 of Chapter 8 of [SS03]) If P is a simply connected region bounded by
a polygon whose vertices aq,...,a, and angles ay7, ..., a,7 and F is a conformal
map of the disk D to P, then there exist complex numbers By, ..., B, on the unit
circle, and constants ¢; and ¢y so that

F(z)= 61/1 (C—B)Pr---(C— B,

+ Co.
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[Hint: This follows from the standard correspondence between H and D and an
argument similar to that used in the proof of Theorem 4.7.]

Solution. Recall the conformal map G : D — H

1—=z
G(z) =1
(2) =i
with inverse G : H — D .
G Hw) = L
1+ w

Then if F' is a conformal map from D to P as in the question, F oG~! is a conformal
map from H to P. By Theorem 4.6 of Chapter 8, we therefore have that

-1 b dg
(Fo@G )(w):cl/1 (g—Al)Bl"‘(C—An)Bn+C2

where ¢, ¢5 are constants in C. Then composing with G on the right, we find that

C)
F(Z>:Cl/1 (%_/h)ﬁl.f (%_An)ﬁ" + 2
af e
01/1 (%_A1>51.__<%_An>ﬁn+62
7 d¢
:‘2“1/1 (= C=A)p (= (= Agm 7

[ a
V), (C=DB)s---(C— B,)bn
for ¢; = 2ic; and B; = A; — ¢ for j = 1,...,n and after making the change of
variables ( — —(. <

+ co

. (Exercise 24(a)(b) of Chapter 8 of [SS03]|) The elliptic integrals K and K’ defined
for 0 < k <1 by

1 dx ! M dx
SR A e IR A e

satisfy various interesting identities. For instance:

(a) Show that if k2 =1 — k% and 0 < k < 1, then
K'(k) = K(k).
[Hint: Change variables # = (1 — k%y®)~"/2 in the integral defining K'(k).]
(b) Prove that if k2 =1 — k?, and 0 < k < 1, then

K(k) = 2 k(=4
1+k \1+k

[Hint: Change variables x = 2t/(1 4+ k + (1 — k)t2).]
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Solution. (a) Following the hint, we let z = (1 — k2y?)~1/2 then dz = k2y(1 —
k?y*)~3/2dy and we see that when = 1, y = 0 and when z = 1/k, y = 1.
Then plugging into K’(k), we have

o 1/k dx
#0= [ o —R)7

B /1 2y (1 — F22)%2dy |
0 [((1 — f2y2)-1 — 1) (1 — k21— ];,2y2)—1>] 12

Some algebra shows

_ _ 12,2 - -
Lo, (1 - k*y?) — 221 - )
1 — k292 1 — k22
2 12,2 1.2 .2 1.2,2 B N
1 k:~ :1 kyN k :k: Nk:y C R — (1 — )
1 — k29?2 1 — k292 1 — k292

and plugging into above, we have

];2?/(1 _ l~€2y2)3/2dy

1
<o) (0= F 1) (10— k)]
/ 7621/(1 — k*y?) 3 Rdy
(o) fea i)
2,2\—1/2
[ y)>1/2 " wh
as required.
(b) Following the hint, let = = = 2t = then

(14 k+(1—k)e2)

gy 20tk (1 k)t?) —4(1 - K221 +~I% — (1 —k)t?)

(1+ k4 (1 — k)t2)? (14 k+ (1 — k)t2)?
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and we see that when z = 0,¢ = 0 and when x = 1, t = 1. Some algebra shows

) 2t ?
tmrete ((1+l%+(1—12:)t2)>
4t
(14 k4 (1 — k)t2)2
(14 k+ (1 — k)t?)? — 4t
(14 k+ (1 — k)2)?
(14 k)2 +2(1 — k)12 + (1 — k)2t — 4
(1+k+ (1 —k)2)2
(14 k)2 —2(1 4+ k)t + (1 — k)t
(14 k+ (1 — k)t2)2
o (+R? (1_2 L4k, (=R 4>
(14 k+ (1 —k)t?)? (1+k)? (1+k)?

—1—

and using the fact that k2 =1 — k2 = 1 — k% = k2, we also have

2. 2 2 2t ?
1_kx‘_l_k<u+é+ufima)
4k>t?
(14 k+ (1 —k)t2)2
(14 k+ (1 — k)t?)? — 4kt
(14 k+ (1 — k)t2)?
(1+ k)2 4201 — k)2 + (1 — k)2t — 4k%t*
(14 k4 (1 — k)2)2
(1+k)?2=201 — k)2 + (1 — k)24
(14 k+ (1 — k)2)?

_ (1+k)? 1_21—/%2 752+(1—/§:)2t4
(1+k+ (1 —k)t2)? (1+ k)2 (1+ k)2

SRR Y T A
(4 k4 (1= k)2)? 1+k




MATH4060 Complex Analysis

Plugging into the definition of K (k), we have

/1 dx
Jo (T=22)(1 — K22?))1/2

2(14-k—(1—k)t?) +

_/1 (k4 (1—E)t2)2
- B _ 1/2
V(e (12 U k)2t4)>1/2( e (1 _t2>2>

<

14+-k+(1—k)t2)2 (1+k)2 (1+k)2 (1+k+(1—Fk)t2)2 1+k
2 /1 1 —
B 1 + ]~€ 0 1 k)2

—k
k!
. 9\ 1/2
14k 1-k
(1_2(1+k £+ (1+k)2 ) <( - 1+kt2>)
2 /1 dt
B 1—1—/;7 0 i 2 1/2
(- - (2)'))

t2dt
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