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1. (Exercise 15 of Chapter 8 of [SS03]) Here are two properties enjoyed by automor-
phisms of the upper half-plane.

(a) Suppose Φ is an automorphism of H that fixes three distinct points on the real
axis. Then Φ is the identity.

(b) Suppose (x1, x2, x3) and (y1, y2, y3) are two pairs of three distinct points on the
real axis with

x1 < x2 < x3 and y1 < y2 < y3.

Prove that there exists (a unique) automorphism Φ of H so that Φ(xj) = yj,
j = 1, 2, 3. The same conclusion holds if y3 < y1 < y2 or y2 < y3 < y1.

Solution. (a) By Theorem 2.4 of Chapter 8 of [SS03], Φ is of the form

Φ(z) =
az + b

cz + d
, a, b, c, d ∈ R and ad− bc = 1.

Let x1, x2, x3 ∈ R be the distinct fixed points of Φ, then

Φ(xi) = xi ⇒ cx2
i + (d− a)xi − b = 0, for i = 1, 2, 3.

However, by the fundamental theorem of algebra, the equation above has at
most two solutions. Hence, the equation above can only be the trivial equation
(0 = 0) which implies c = d − a = −b = 0. In particular, since ad = 1, this
forces a = d = ±1. Plugging these values for a, b, c, d back into the form of Φ
above, we find that

Φ(z) =
±z

±1
= z

the identity.

(b) We can define Φ implicitly by the equation of cross ratios

(z − x1)(x2 − x3)

(z − x3)(x2 − x1)
=

(Φ(z)− y1)(y2 − y3)

(Φ(z)− y3)(y2 − y1)

which by construction makes Φ map xi to yi for i = 1, 2, 3 respectively. The
way to see this is that the equation above becomes

(Φ(z)− y3)(y2 − y1)(z − x1)(x2 − x3) = (Φ(z)− y1)(y2 − y3)(z − x3)(x2 − x1).

In the equation above, if Φ(z) = y1, then the right-hand side is 0 forcing z = x1

on the left-hand side. Similarly, if Φ(z) = y3, then the left-hand side is 0 which
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forces z = x3 on the right-hand side. Finally, if Φ(z) = y2, then the equation
above reduces to

(z − x1)(x2 − x3) = (z − x3)(x2 − x1) ⇒ z(x1 − x3) = x2(x1 − x3) ⇒ z = x2.

We now solve for Φ(z) explicitly. Let α = (y2 − y1)(x2 − x3) and β = (y2 −
y3)(x2 − x1). Then re-arranging the equation above, we obtain

Φ(z) =
(z − x1)y3α− (z − x3)y1β

(z − x1)α− (z − x3)β

=
(y3α− y1β)z + (y1x3β − y3x1α)

(α− β)z + (x3β − x1α)

which has determinant

(y3α− y1β)(x3β − x1α)− (y1x3β − y3x1α)(α− β)

= αβ(x3y3 + x1y1 − x3y1 − x1y3)

= αβ(x3 − x1)(y3 − y1)

= (y2 − y1)(x2 − x3)(y2 − y3)(x2 − x1)(x3 − x1)(y3 − y1)

which is positive by the assumptions x1 < x2 < x3, y1 < y2 < y3. Hence, we see
that Φ is an automorphism of H. It remains to show uniqueness. Suppose Φ̃
is another automorphism of H which maps xi to yi for i = 1, 2, 3 respectively.
Then we see that Φ̃−1 ◦ Φ and Φ−1 ◦ Φ̃ both have three distinct fixed points
which by part (a) above implies they are both the identity. From here it is
easy to deduce that Φ = Φ̃.

◀

2. (Exercise 21 of Chapter 8 of [SS03]) We consider conformal mappings to triangles.

(a) Show that ∫ z

0

ζ−β1(1− ζ)−β2dζ,

with 0 < β1 < 1, 0 < β2 < 1, and 1 < β1 + β2 < 2, maps H to a triangle
whose vertices are the images of 0, 1, and ∞, and with angles α1π, α2π, and
α3π, where αj + βj = 1 and β1 + β2 + β3 = 2.

(b) What happens when β1 + β2 = 1?

(c) What happens when 0 < β1 + β2 < 1?

(d) In (a), the length of the side of the triangle opposite angle αjπ is

sin(αjπ)

π
Γ(α1)Γ(α2)Γ(α3).

Solution. (a) Note the typo the integral above (with corrections in red) in the
textbook. Letting S(z) be the integral above, we see that

S(z) =

∫ z

0

ζ−β1(1− ζ)−β2dζ = eiβ2π

∫ z

0

ζ−β1(ζ − 1)−β2dζ
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which by Proposition 4.1 of Chapter 8 of [SS03], maps R∪{∞} to the triangle
with vertices at the images of 0, 1,∞ with the desired conclusions on the angles.
To see that S is a conformal mapping of H to the triangular region with vertices
as above, we use the uniqueness of Theorem 4.7 of Chapter 8 of [SS03]. Let F
be the conformal mapping of H to the triangle with the desired vertices, that
is, F (0) = S(0), F (1) = S(1), F (∞) = S(∞) and the same interior angles as
above. Then by Theorem 4.7, F takes the form

F (z) = C1

∫ z

0

ζ−β1(ζ − 1)−β2dζ + C2.

It remains to determine the values of the constants C1, C2. Since S(0) = 0,
F (0) = 0 as well and hence C2 = 0. Then the equation F (1) = S(1) implies
C1 = eiβ2π as well.

(b) By Proposition 4.1, when β1+β2 = 1, the interior angle at the image of infinity
is π and therefore the image of S is the unbounded region with a line segment
and two parallel lines as the boundary.

(c) Similarly, when β1 + β2 < 1, the image of S is the unbounded region with line
segment and two non-parallel lines as the boundary.

(d) The sides are the images of (−∞, 0), (0, 1), (1,∞) respectively. Recall the for-
mula for the Beta function shown in Homework 3

B(α, β) =

∫ 1

0

(1− t)α−1tβ−1dt =
Γ(α)Γ(β)

Γ(α + β)

Then we first compute∫ 1

0

(−t)−β2t−β1dt =
Γ(1− β2)Γ(1− β1)

Γ(2− β2 − β1)

=
Γ(α2)Γ(α1)

Γ(1− α3)

=
sin (α3π)

π
Γ(α1)Γ(α2)Γ(α3)

where we also used the symmetry of the Γ function around the line Re(s) =
1

2
(Theorem 1.4 of Chapter 6 of [SS03]).

For
∫∞
1
(1−t)−β2t−β1dt one obtains the corresponding formula using the change

of variables t = s−1 and for
∫ 0

−∞(1− t)−β2t−β1dt one obtains the corresponding

formula using the change of variables t = 1− s−1.

◀

3. (Exercise 22 of Chapter 8 of [SS03]) If P is a simply connected region bounded by
a polygon whose vertices a1, . . . , an and angles α1π, . . . , αnπ and F is a conformal
map of the disk D to P , then there exist complex numbers B1, . . . , Bn on the unit
circle, and constants c1 and c2 so that

F (z) = c1

∫ z

1

dζ

(ζ −B1)β1 · · · (ζ −Bn)βn
+ c2.



MATH4060 Complex Analysis 4

[Hint: This follows from the standard correspondence between H and D and an
argument similar to that used in the proof of Theorem 4.7.]

Solution. Recall the conformal map G : D → H

G(z) = i
1− z

1 + z

with inverse G−1 : H → D
G−1(w) =

i− w

i+ w
.

Then if F is a conformal map from D to P as in the question, F ◦G−1 is a conformal
map from H to P . By Theorem 4.6 of Chapter 8, we therefore have that

(F ◦G−1)(w) = c1

∫ w

1

dζ

(ζ − A1)β1 · · · (ζ − An)βn
+ c2

where c1, c2 are constants in C. Then composing with G on the right, we find that

F (z) = c1

∫ z

1

d
(

i−ζ
i+ζ

)
(

i−ζ
i+ζ

− A1

)β1

· · ·
(

i−ζ
i+ζ

− An

)βn
+ c2

= c1

∫ z

1

−2i
(i+ζ)2

dζ(
i−ζ
i+ζ

− A1

)β1

· · ·
(

i−ζ
i+ζ

− An

)βn
+ c2

= −2ic1

∫ z

1

dζ

(i− ζ − A1)β1 · · · (i− ζ − An)βn
+ c2

= c′1

∫ z

1

dζ

(ζ −B1)β1 · · · (ζ −Bn)βn
+ c2

for c′1 = 2ic1 and Bj = Aj − i for j = 1, . . . , n and after making the change of
variables ζ 7→ −ζ. ◀

4. (Exercise 24(a)(b) of Chapter 8 of [SS03]) The elliptic integrals K and K ′ defined
for 0 < k < 1 by

K(k) =

∫ 1

0

dx

((1− x2)(1− k2x2))1/2
and K ′(k) =

∫ 1/k

1

dx

((x2 − 1)(1− k2x2))1/2

satisfy various interesting identities. For instance:

(a) Show that if k̃2 = 1− k2 and 0 < k̃ < 1, then

K ′(k) = K(k̃).

[Hint: Change variables x = (1− k̃2y2)−1/2 in the integral defining K ′(k).]

(b) Prove that if k̃2 = 1− k2, and 0 < k̃ < 1, then

K(k) =
2

1 + k̃
K

(
1− k̃

1 + k̃

)
.

[Hint: Change variables x = 2t/(1 + k̃ + (1− k̃)t2).]
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Solution. (a) Following the hint, we let x = (1 − k̃2y2)−1/2, then dx = k̃2y(1 −
k̃2y2)−3/2dy and we see that when x = 1, y = 0 and when x = 1/k, y = 1.
Then plugging into K ′(k), we have

K ′(k) =

∫ 1/k

1

dx

((x2 − 1)(1− k2x2))1/2

=

∫ 1

0

k̃2y(1− k̃2y2)3/2dy[(
(1− k̃2y2)−1 − 1

)(
1− k2(1− k̃2y2)−1

)]1/2 .
Some algebra shows

1

1− k̃2y2
− 1 =

1− (1− k̃2y2)

1− k̃2y2
= k̃2y2(1− k̃2y2)−1

1− k2

1− k̃2y2
=

1− k̃2y2 − k2

1− k̃2y2
=

k̃2 − k̃2y2

1− k̃2y2
= k̃2(1− y2)(1− k̃2y2)−1

and plugging into above, we have

K ′(k) =

∫ 1

0

k̃2y(1− k̃2y2)3/2dy[(
(1− k̃2y2)−1 − 1

)(
1− k2(1− k̃2y2)−1

)]1/2
=

∫ 1

0

k̃2y(1− k̃2y2)−3/2dy[(
k̃2y2(1− k̃2y2)−1

)(
k̃2(1− y2)(1− k̃2y2)−1

)]1/2
=

∫ 1

0

(1− k̃2y2)−1/2dy

(1− y2)1/2
= K(k̃)

as required.

(b) Following the hint, let x =
2t

(1 + k̃ + (1− k̃)t2)
, then

dx =
2(1 + k̃ + (1− k̃)t2)− 4(1− k̃)t2

(1 + k̃ + (1− k̃)t2)2
=

2(1 + k̃ − (1− k̃)t2)

(1 + k̃ + (1− k̃)t2)2
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and we see that when x = 0, t = 0 and when x = 1, t = 1. Some algebra shows

1− x2 = 1−
(

2t

(1 + k̃ + (1− k̃)t2)

)2

= 1− 4t2

(1 + k̃ + (1− k̃)t2)2

=
(1 + k̃ + (1− k̃)t2)2 − 4t4

(1 + k̃ + (1− k̃)t2)2

=
(1 + k̃)2 + 2(1− k̃2)t2 + (1− k̃)2t4 − 4t4

(1 + k̃ + (1− k̃)t2)2

=
(1 + k̃)2 − 2(1 + k̃2)t2 + (1− k̃)2t4

(1 + k̃ + (1− k̃)t2)2

=
(1 + k̃)2

(1 + k̃ + (1− k̃)t2)2

(
1− 2

1 + k̃2

(1 + k̃)2
t2 +

(1− k̃)2

(1 + k̃)2
t4

)

and using the fact that k̃2 = 1− k2 ⇒ 1− k̃2 = k2, we also have

1− k2x2 = 1− k2

(
2t

(1 + k̃ + (1− k̃)t2)

)2

= 1− 4k2t2

(1 + k̃ + (1− k̃)t2)2

=
(1 + k̃ + (1− k̃)t2)2 − 4k2t4

(1 + k̃ + (1− k̃)t2)2

=
(1 + k̃)2 + 2(1− k̃2)t2 + (1− k̃)2t4 − 4k2t4

(1 + k̃ + (1− k̃)t2)2

=
(1 + k̃)2 − 2(1− k̃2)t2 + (1− k̃)2t4

(1 + k̃ + (1− k̃)t2)2

=
(1 + k̃)2

(1 + k̃ + (1− k̃)t2)2

(
1− 2

1− k̃2

(1 + k̃)2
t2 +

(1− k̃)2

(1 + k̃)2
t4

)

=
(1 + k̃)2

(1 + k̃ + (1− k̃)t2)2

(
1− 1− k̃

1 + k̃
t2

)2
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Plugging into the definition of K(k), we have

K(k)

=

∫ 1

0

dx

((1− x2)(1− k2x2))1/2

=

∫ 1

0

2(1+k̃−(1−k̃)t2)

(1+k̃+(1−k̃)t2)2
dt(

(1+k̃)2

(1+k̃+(1−k̃)t2)2

(
1− 2 1+k̃2

(1+k̃)2
t2 + (1−k̃)2

(1+k̃)2
t4
))1/2(

(1+k̃)2

(1+k̃+(1−k̃)t2)2

(
1− 1−k̃

1+k̃
t2
)2)1/2

=
2

1 + k̃

∫ 1

0

1− 1−k̃
1+k̃

t2dt(
1− 2 1+k̃2

(1+k̃)2
t2 + (1−k̃)2

(1+k̃)2
t4
)1/2((

1− 1−k̃
1+k̃

t2
)2)1/2

=
2

1 + k̃

∫ 1

0

dt(
(1− t2)

(
1−

(
1−k̃
1+k̃

)2
t2
))1/2

=
2

1 + k̃
K

(
1− k̃

1 + k̃

)
.

◀
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